
PETSc Tutorial

Satish Balay
Lois Curfman McInnes

Argonne National Laboratory

with thanks to Jed Brown, Matt Knepley, Karl Rupp, and Barry Smith for slides
additional tutorial material available via https://www.mcs.anl.gov/petsc

Argonne Training Program on Extreme-Scale Computing
August 5, 2016

https://www.mcs.anl.gov/petsc


2

OutlineOutline

PETSc Tutorial

Philosophy

Vectors and matrices (Vec, Mat)

Linear solvers (KSP, PC)

Nonlinear solvers (SNES)

DAE/ODE integrators: Timestepping (TS)

Optimization solvers (TAO)

Topology abstractions: Distributed arrays (DMDA)

Understanding performance



3

PETScPETSc

About PETSc



4

PETSc OriginsPETSc Origins

PETSc was developed as a Platform for
Experimentation

We want to experiment with different

Models

Discretizations

Solvers

Algorithms

These boundaries are often blurred...



5

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Architecture
Tightly coupled (e.g. XT5, BG/P, Earth Simulator)

Loosely coupled such as network of workstations

GPU clusters (many vector and sparse matrix kernels)

Software Environment
Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)

Any compiler

Usable from C, C++, Fortran 77/90, Python

Real/complex, single/double/quad precision, 32/64-bit int

System Size
500B unknowns, 75% weak scalability on Jaguar (225k cores)
and Jugene (295k cores)

Same code runs performantly on a laptop

Free to everyone (BSD license), open development



6

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Philosophy: Everything has a plugin architecture

Vectors, Matrices, Coloring/ordering/partitioning algorithms

Preconditioners, Krylov accelerators

Nonlinear solvers, Time integrators

Spatial discretizations/topology

Example

Vendor supplies matrix format and associated preconditioner, distributes
compiled shared library.

Application user loads plugin at runtime, no source code in sight.



7

PETScPETSc

Portable Extensible Toolkit for Scientific Computing

Toolset

Algorithms

(Parallel) debugging aids

Low-overhead profiling

Composability

Try new algorithms by choosing from product space

Composing existing algorithms (multilevel, domain decomposition, splitting)

Experimentation

Impossible to pick the solver a priori

PETSc’s response: expose an algebra of composition

Keep solvers decoupled from physics and discretization



8

PETScPETSc

Portable Extensible Toolkit for Scientific Computing
Computational Scientists

PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEO, Columbia),
PFLOTRAN (DOE), SHARP/UNIC (DOE)

Algorithm Developers (iterative methods and preconditioning)

Package Developers
SLEPc, TAO, Deal.II, Libmesh, FEniCS, PETSc-FEM, MagPar, OOFEM,
FreeCFD, OpenFVM

Funding
Department of Energy

SciDAC, ASCR ISICLES, MICS Program, INL Reactor Program
National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

Documentation and Support
Hundreds of tutorial-style examples

Hyperlinked manual, examples, and manual pages for all routines

Support at petsc-maint@mcs.anl.gov petsc-users@mcs.anl.gov

petsc-maint@mcs.anl.gov
petsc-users@mcs.anl.gov


9

The Role of PETScThe Role of PETSc

Developing parallel, nontrivial PDE solvers that deliver high
performance is still difficult and requires months (or even
years) of concentrated effort.

PETSc is a toolkit that can ease these difficulties and re-
duce the development time, but it is not a black-box PDE
solver, nor a silver bullet.

— Barry Smith



10

PETScPETSc

Obtaining PETSc

Linux Package Managers

Web: http://mcs.anl.gov/petsc, download tarball

Git: https://bitbucket.org/petsc/petsc

Installing PETSc

$> cd /path/to/petsc/workdir
$> git clone https://bitbucket.org/petsc/petsc -b maint
$> cd petsc

$> export PETSC_DIR=$PWD PETSC_ARCH=mpich-gcc-dbg
$> ./configure

--with-cc=gcc --with-fc=gfortran --with-cxx=g++
--download-fblaslapack --download-mpich
--download-{ml,hypre,superlu}



11

PETSc External PackagesPETSc External Packages

Most packages can be automatically
Downloaded

Configured and Built (in $PETSC_DIR/$PETSC_ARCH/externalpackages)

Installed with PETSc

Works for (list incomplete)
petsc4py

PETSc documentation utilities (Sowing, lgrind, c2html)

BLAS, LAPACK, BLACS, ScaLAPACK

MPICH, MPE, OpenMPI

ParMetis, Chaco, Party, Scotch, Zoltan

MUMPS, Spooles, SuperLU, SuperLU Dist, UMFPack, pARMS

PaStiX, BLOPEX, FFTW, SPRNG

HYPRE, ML, SPAI

SUNDIALS

Triangle, TetGen, FIAT

HDF5, Boost



12

Commits to the PETSc RepositoryCommits to the PETSc Repository

Graph of commit histroy



13

PETSc PyramidPETSc Pyramid

PETSc Structure



14

Library DesignLibrary Design

Numerical libraries should interact at a higher level than MPI

MPI coordinates data movement and synchronization for data parallel
applications

Numerical libraries should coordinate access to a given data structure
MPI can handle data parallelism and something else (runtime engine) handle
task parallelism

Algorithm should be data structure neutral, but its main operation is still to
structure access



15

Flow Control for a PETSc ApplicationFlow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc



16

InitializationInitialization

Call PetscInitialize()
Setup static data and services
Setup MPI if it is not already
Can set PETSC COMM WORLD to use your communicator
(can always use subcommunicators for each object)

Call PetscFinalize()
Calculates logging summary
Can check for memory leaks, unused options
Shutdown and release resources

Recommend initializing PETSc only once



17

Basic PetscObject UsageBasic PetscObject Usage

Every object in PETSc supports a basic interface
Function Operation

Create() create the object
Get/SetName() name the object
Get/SetType() set the implementation type

Get/SetOptionsPrefix() set the prefix for all options
SetFromOptions() customize object from the command line

SetUp() preform other initialization
View() view the object

Destroy() cleanup object allocation
Also, all objects support the -help option.



18

PETScPETSc

Vectors and Matrices



19

Vector AlgebraVector Algebra

What are PETSc vectors?

Fundamental objects representing field solutions, right-hand sides, etc.

Each process locally owns a subvector of contiguous global data

How do I create vectors?

VecCreate(MPI Comm, Vec *)

VecSetSizes(Vec, int n, int N)

VecSetType(Vec, VecType typeName)

VecSetFromOptions(Vec) – Can set the type at runtime

A PETSc Vec

Has a direct interface to the values
Supports all vector space operations

VecDot(), VecNorm(), VecScale()

Has unusual operations, e.g. VecSqrt(), VecWhichBetween()

Communicates automatically during assembly

Has customizable communication (scatters)



20

CollectivityCollectivity

MPI communicators (MPI Comm) specify collectivity
Processes involved in a computation

Constructors are collective over a communicator
VecCreate(MPI Comm comm, Vec *x)
Use PETSC COMM WORLD for all processes and PETSC COMM SELF for one

Some operations are collective, while others are not
collective: VecNorm()
not collective: VecGetLocalSize()

Sequences of collective calls must be in the same order on each process



21

Parallel AssemblyParallel Assembly
Vectors and MatricesVectors and Matrices

Processes may set an arbitrary entry
Must use proper interface

Entries need not be generated locally
Local meaning the process on which they are stored

PETSc automatically moves data if necessary
Happens during the assembly phase



22

Vector AssemblyVector Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

VecSetValues(Vec v, int n, int rows[], PetscScalar
values[], mode)

mode is either INSERT VALUES or ADD VALUES
Two phase assembly allows overlap of communication and computation

VecAssemblyBegin(Vec v)
VecAssemblyEnd(Vec v)



23

One Way to Set the Elements of a VectorOne Way to Set the Elements of a Vector

VecGetSize(x, &N);
MPI Comm rank(PETSC COMM WORLD, &rank);
if (rank == 0) {
for(i = 0, val = 0.0; i < N; i++, val += 10.0) {
VecSetValues(x, 1, &i, &val, INSERT VALUES);

}
}
/* These routines ensure that the data is distributed to the
other processes */
VecAssemblyBegin(x);
VecAssemblyEnd(x);



24

A Better Way to Set the Elements of a VectorA Better Way to Set the Elements of a Vector

VecGetOwnershipRange(x, &low, &high);
for(i = low,val = low*10.0; i < high; i++,val += 10.0) {
VecSetValues(x, 1, &i, &val, INSERT VALUES);

}
/* These routines ensure that the data is distributed to the
other processes */
VecAssemblyBegin(x);
VecAssemblyEnd(x);



25

Ghost ValuesGhost Values

To evaluate a local function f (x), each process requires

its local portion of the vector x

its ghost values, bordering portions of x owned by neighboring processes

Local Node
Ghost Node



26

Working With Local VectorsWorking With Local Vectors

It is sometimes more efficient to directly access local storage of a Vec.
PETSc allows you to access the local storage with

VecGetArray(Vec, double *[])

You must return the array to PETSc when you finish
VecRestoreArray(Vec, double *[])

Allows PETSc to handle data structure conversions
Commonly, these routines are inexpensive and do not involve a copy



27

MatricesMatrices

Definition (Matrix)
A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)
Forming or assembling a matrix means defining its action in terms of entries
(usually stored in a sparse format).



28

How do I create matrices?How do I create matrices?

MatCreate(MPI Comm, Mat *)

MatSetSizes(Mat, int m, int n, int M, int N)

MatSetType(Mat, MatType typeName)

MatSetFromOptions(Mat)
Can set the type at runtime

MatMPIBAIJSetPreallocation(Mat,...)
important for assembly performance

MatSetBlockSize(Mat, int bs)
for vector problems

MatSetValues(Mat,...)
MUST be used, but does automatic communication
MatSetValuesLocal, MatSetValuesStencil,
MatSetValuesBlocked



29

Matrix PolymorphismMatrix Polymorphism

The PETSc Mat has a single user interface,
Matrix assembly

MatSetValues()

Matrix-vector multiplication
MatMult()

Matrix viewing
MatView()

but multiple underlying implementations.

AIJ, Block AIJ, Symmetric Block AIJ,

Dense, Elemental

Matrix-Free

etc.

A matrix is defined by its interface, not by its data structure.



30

PETSc Application IntegrationPETSc Application Integration

Parallel Sparse Matrix

Each process locally owns a submatrix of contiguous global rows

Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3

proc 2

proc 1

proc 0

diagonal blocks

offdiagonal blocks

MatGetOwnershipRange(Mat A,int *start,int *end)

start: first locally owned row of global matrix
end-1: last locally owned row of global matrix



31

One Way to Set the Elements of a MatrixOne Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
if (rank == 0) {

for(row = 0; row < N; row++) {
cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {

MatSetValues(A,1,&row,2,&cols[1],&v[1],
INSERT_VALUES);

} else if (row == N-1) {
MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);

} else {
MatSetValues(A,1,&row,3,cols,v,INSERT_VALUES);

}
}

}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);



32

A Better Way to Set the Elements of a MatrixA Better Way to Set the Elements of a Matrix

A More Efficient Way

v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
for(row = start; row < end; row++) {

cols[0] = row-1; cols[1] = row; cols[2] = row+1;
if (row == 0) {
MatSetValues(A,1,&row,2,&cols[1],&v[1],

INSERT_VALUES);
} else if (row == N-1) {
MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);

} else {
MatSetValues(A,1,&row,3,cols,v,INSERT_VALUES);

}
}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);

Advantages

All ranks busy: Scalable!

Amount of code essentially unchanged



33

PETScPETSc

Iterative Solvers



34

MatricesMatrices

What can we do with a matrix that doesn’t have entries?

Krylov solvers for Ax = b

Krylov subspace: {b,Ab,A2b,A3b, . . . }
Convergence rate depends on the spectral properties of the matrix

For any popular Krylov method K, there is a matrix of size m, such that K
outperforms all other methods by a factor at least O(

√
m) [Nachtigal et. al.,

1992]

Typically...

The action y← Ax can be computed in O(m)

Aside from matrix multiply, the nth iteration requires at most O(mn)



35

PETSc SolversPETSc Solvers

Linear Solvers - Krylov Methods

Using PETSc linear algebra, just add:

KSPSetOperators(KSP ksp, Mat A, Mat M)
KSPSolve(KSP ksp, Vec b, Vec x)

Can access subobjects

KSPGetPC(KSP ksp, PC *pc)

Preconditioners must obey PETSc interface
Basically just the KSP interface

Can change solver dynamically from the command line, -ksp_type



36

Linear Solvers in PETSc KSPLinear Solvers in PETSc KSP

Linear Solvers in PETSc KSP (Excerpt)

Richardson

Chebychev

Conjugate Gradient

BiConjugate Gradient

Generalized Minimum Residual Variants

Transpose-Free Quasi-Minimum Residual

Least Squares Method

Conjugate Residual

Complete table of solvers

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html


37

PETScPETSc

Preconditioners



38

PreconditioningPreconditioning

Idea: improve the conditioning of the Krylov operator

Left preconditioning
(P−1A)x = P−1b

{P−1b, (P−1A)P−1b, (P−1A)2P−1b, . . . }

Right preconditioning
(AP−1)Px = b

{b, (P−1A)b, (P−1A)2b, . . . }

The product P−1A or AP−1 is not formed.

A preconditioner P is a method for constructing a matrix (just a linear function,
not assembled!) P−1 = P(A,Ap) using a matrix A and extra information Ap, such
that the spectrum of P−1A (or AP−1) is well-behaved.



39

Preconditioners in PETSC PCPreconditioners in PETSC PC

Preconditioners in PETSc PC (Excerpt)

Jacobi

block Jacobi

SOR

Additive Schwarz

Incomplete factorizations (ILU(k), ICC(k))

Multigrid (geometric, algebraic)

Physics-based splitting

Approximate inverses

Substructuring

Matrix-free (infrastructure for custom approaches provided by user)

Complete table of solvers

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html


40

Splitting for MultiphysicsSplitting for Multiphysics

[
A B
C D

] [
x
y

]
=

[
f
g

]

Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative][

A
D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

] [
A
C D

]−1
)

Gauss-Seidel inspired, works when fields are loosely coupled

Factorization: -pc_fieldsplit_type schur[
A B

S

]−1 [ 1
CA−1 1

]−1

, S = D− CA−1B

robust (exact factorization), can often drop lower block
how to precondition S which is usually dense?

interpret as differential operators, use approximate commutators



41

Solver CompositionSolver Composition

Unintrusive composition of multigrid and block preconditioning

We can build many preconditioners from the literature
on the command line

User code does not depend on matrix format, preconditioning method,
nonlinear solution method, time integration method (implicit or IMEX), or size
of coupled system (except for driver).



42

PETScPETSc

Nonlinear Solvers



43

Nonlinear Solvers in PETSc SNESNonlinear Solvers in PETSc SNES

Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region

NRichardson Nonlinear Richardson, usually preconditioned

VIRS, VISS reduced space and semi-smooth methods for variational
inequalities

QN Quasi-Newton methods like BFGS

NGMRES Nonlinear GMRES

NCG Nonlinear Conjugate Gradients

GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps

FAS Full approximation scheme (nonlinear multigrid)

MS Multi-stage smoothers, often used with FAS for hyperbolic
problems

Shell Your method, often used as a (nonlinear) preconditioner



44

Basic Solver UsageBasic Solver Usage

We will illustrate basic solver usage with SNES.
Use SNESSetFromOptions() so that everything is set dynamically

Use -snes type to set the type or take the default
Override the tolerances

Use -snes rtol and -snes atol

View the solver to make sure you have the one you expect
Use -snes view

For debugging, monitor the residual decrease
Use -snes monitor
Use -ksp monitor to see the underlying linear solver



45

Newton iteration: Workhorse of SNESNewton iteration: Workhorse of SNES

Standard form of a nonlinear system

F(u) = 0

Iteration

Solve: J(u)w = −F(u)

Update: u+ ← u + w

Quadratically convergent near a root:
∣∣un+1 − u∗

∣∣ ∈ O( |un − u∗|2
)

Picard is the same operation with a different J(u)

Example (Nonlinear Poisson)

F(u) = 0 ∼ −÷
[
(1 + u2)∇u

]
− f = 0

J(u)w ∼ −÷
[
(1 + u2)∇w + 2uw∇u

]



46

Flow Control for a PETSc ApplicationFlow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc



47

SNES ParadigmSNES Paradigm

SNES Interface based upon Callback Functions

FormFunction(), set by SNESSetFunction()

FormJacobian(), set by SNESSetJacobian()

Evaluating the nonlinear residual F(x)

Solver calls the user’s function

User function gets application state through the ctx variable

PETSc never sees application data



48

SNES FunctionSNES Function

F(u) = 0

The user provided function which calculates the nonlinear residual has signature

PetscErrorCode (*func)(SNES snes,
Vec x,Vec r,
void *ctx)

x - The current solution

r - The residual
ctx - The user context passed to SNESSetFunction()

Use this to pass application information, e.g. physical constants



49

SNES JacobianSNES Jacobian

User-provided function calculating the Jacobian Matrix

PetscErrorCode (*func)(SNES snes,Vec x,Mat *J,Mat *M,
MatStructure *flag,void *ctx)

x - The current solution

J - The Jacobian

M - The Jacobian preconditioning matrix (possibly J itself)
ctx - The user context passed to SNESSetFunction()

Use this to pass application information, e.g. physical constants
Possible MatStructure values are:

SAME_NONZERO_PATTERN
DIFFERENT_NONZERO_PATTERN

Alternatives

a builtin sparse finite difference approximation (“coloring”)

automatic differentiation (ADIC/ADIFOR)



50

PETScPETSc

Time Integration



51

Time Integration in PETScTime Integration in PETSc

ODE forms supported

G(t, x, ẋ) = F(t, x)

Jα = αGẋ + Gx or

M(t)ẋ = F(t, x)

Jα = αM or

ẋ = F(t, x)

User provides:
FormRHSFunction(ts,t,x,F,void *ctx);
FormIFunction(ts,t,x,ẋ,G,void *ctx);
FormIJacobian(ts,t,x,ẋ,α,J,Jp,void *ctx);



52

Motivation for IMEX Time IntegrationMotivation for IMEX Time Integration

Explicit methods are easy and accurate, but must resolve all time scales
Reactions, acoustics, incompressibility

Implicit methods are robust
Mathematically good for stiff systems
Harder to implement, need efficient solvers

Implicit-explicit methods blend the benefits of both
Benefits of explicit for parts of problems that are not stiff
Benefits of implicit where needed
Good approach for multiphysics applications



53

Some TS MethodsSome TS Methods

TSSSPRK104 10-stage, fourth order, low-storage, optimal explicit SSP
Runge-Kutta ceff = 0.6 (Ketcheson 2008)

TSARKIMEX2E second order, one explicit and two implicit stages, L-stable,
optimal (Constantinescu)

TSARKIMEX3 (and 4 and 5), L-stable (Kennedy and Carpenter, 2003)

TSROSWRA3PW three stage, third order, for index-1 PDAE, A-stable,
R(∞) = 0.73, second order strongly A-stable embedded method
(Rang and Angermann, 2005)

TSROSWRA34PW2 four stage, third order, L-stable, for index 1 PDAE, second
order strongly A-stable embedded method (Rang and
Angermann, 2005)

TSROSWLLSSP3P4S2C four stage, third order, L-stable implicit, SSP explicit,
L-stable embedded method (Constantinescu)

TS solver options

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSetFromOptions.html


54

Interactions among Composable SolversInteractions among Composable Solvers

Interface to highest level that makes sense for your problem: TS preferable

Customize algorithmic layers as needed: SNES, KSP, PC
Can make choices at runtime for algorithms and data structures

ARK IMEX Rosenbrock-W SSP RK Pseudo

TS

Newton line search VISS VIRS Multi-stage

NGMRES NRichardson FAS Quasi-Newton Shell

SNES

GMRES FGMRES IBiCGStab CG Pre only

KSP

ASM FieldSplit MG KSP SOR ILU LU Shell

PC

AIJ BAIJ SBAIJ Nest CUSP

Mat
MPI Ghost CUDA

Vec

g(x, z + αx, t) = 0

J−1
α J−1

α

npc

npc

J−1
J−1
reduced H−1

0

sub
split levels

inner

overlap relax

factor
sub



55

Application IntegrationApplication Integration

Be willing to experiment with algorithms

No optimality without interplay between physics and algorithmics

Adopt flexible, extensible programming

Algorithms and data structures not hardwired

Be willing to play with the real code

Toy models have limited usefulness

But make test cases that run quickly

If possible, profile before integration

Automatic in PETSc



56

Incorporating PETSc into Existing CodesIncorporating PETSc into Existing Codes

PETSc does not seize main(), does not control output

Propogates errors from underlying packages, flexible

Nothing special about MPI_COMM_WORLD

Can wrap existing data structures/algorithms
MatShell, PCShell, full implementations

VecCreateMPIWithArray()

MatCreateSeqAIJWithArrays()

Use an existing semi-implicit solver as a preconditioner

Usually worthwhile to use native PETSc data structures
unless you have a good reason not to

Uniform interfaces across languages
C, C++, Fortran 77/90, Python

Do not have to use high level interfaces (e.g. SNES, TS, DM)
but PETSc can offer more if you do, like MFFD and SNES Test



57

Better To Use than PETScBetter To Use than PETSc

Use the package with the highest level of abstraction that uses PETSc

Eigenvalues - SLEPc

Finite Elements - Deal.II, Libmesh, FEniCS, PETSc-FEM, OOFEM,

Finite Elements and Multiphysics - MOOSE

Finite Volumes - FreeCFD, OpenFVM

Wave Propagation - PyClaw

Micromagnetics - MagPar
Numerical Optimization - Toolkit for Advanced Optimization (TAO)

TAO is now part of PETSc



58

PETScPETSc

Nonlinear Optimization: TAO

Developers: Todd Munson, Jason Sarich, Stefan Wild



59

Nonlinear OptimizationNonlinear Optimization

Solves Nonlinear Optimization Problems:

f : RN 7→ R
min
x∈RN

f (x)

With optional variable bounds:

subject to xl ≤ x ≤ xu (bounds)

Or complementarity constraints:

Fi(x∗) ≥ 0 if x∗i = `i

Fi(x∗) = 0 if `i < x∗i < ui

Fi(x∗) ≤ 0 if x∗i = ui.

Also some support for PDE-constrained applications and general contraints



60

TAO AlgorithmsTAO Algorithms

TAO provides a suite of (iterative) nonlinear optimization algorithms. Typically,
each iteration involves calculating a search direction dk, then function values and
gradients along that direction are calculated until desired conditions are met.

Newton’s Method
Calculate the direction dk+1 by solving the system:

∇2f (xk)dk+1 = −∇f (xk)

Quasi-Newton Methods
Use approximate Hessian Bk ≈ ∇2f (xk). Choose a formula for Bk so that Bk
relies on first derivative information only, can be easily stored and
Bkdk+1 = −∇f (xk) can be easily solved.

Conjugate Gradient

Derivative Free



61

TAO SolversTAO Solvers

Solvers available in TAO
handles constraints requires gradient requires Hessian

Quasi-Newton (lmvm) no yes no
Newton Line Search (nls) no yes yes
Newton Trust Region (ntr) no yes yes

Newton Trust with Line Search (ntl) no yes yes
Conjugate Gradient (cg) no yes no

Nelder-Mead (nm) no no no
Quasi-Newton (blmvm) bounds yes no

Newton Trust Region (tron) bounds yes yes
Conjugate Gradient (gpcg)
(Quadratic objective only) bounds yes no

Model-based derivative free
nonlinear least-squares (pounders) yes no no
Semismooth – Feasibility-enforced

(SSFLS) complementarity yes yes
Semismooth – Feasibility not enforced

(SSILS) complementarity yes yes
Active-Set Semismooth – Feasibility-enforced

(ASFLS) complementarity yes yes
Active-Set Semismooth – Feasibility not enforced

(ASILS) complementarity yes yes
Linearly Constrained Lagrangian pde

Interior Point Method (ipm) general yes yes

Manual pages for TAO

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/Tao/index.html


62

PETScPETSc

Topology Abstractions: Distributed Arrays



63

What is a DM?What is a DM?

Interface for linear algebra to talk to grids
Defines (topological part of) a finite-dimensional function space

Get an element from this space: DMCreateGlobalVector()

Provides parallel layout
Refinement and coarsening

DMRefine(), DMCoarsen()
Ghost value coherence

DMGlobalToLocalBegin()

Matrix preallocation:
DMCreateMatrix() (formerly DMGetMatrix())



64

Topology AbstractionsTopology Abstractions

Topology Abstractions

DMDA
Abstracts Cartesian grids in 1, 2, or 3 dimension
Supports stencils, communication, reordering
Nice for simple finite differences

DMPLEX
Abstracts general topology in any dimension
Also supports partitioning, distribution, and global orders
Allows aribtrary element shapes and discretizations

DMCOMPOSITE
Composition of two or more DMs

DMNetwork - for discrete networks like power grids and circuits

DMMoab - interface to the MOAB unstructured mesh library

Manual pages for DM

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/index.html


65

Distributed ArrayDistributed Array

Interface for topologically structured grids

Defines (topological part of) a finite-dimensional function space

Get an element from this space: DMCreateGlobalVector()

Provides parallel layout

Refinement and coarsening

DMRefineHierarchy()

Ghost value coherence

DMGlobalToLocalBegin()

Matrix preallocation

DMCreateMatrix() (formerly DMGetMatrix())



66

Ghost ValuesGhost Values

To evaluate a local function f (x), each process requires

its local portion of the vector x

its ghost values, bordering portions of x owned by neighboring processes

Local Node

Ghost Node



67

DMDA Global NumberingsDMDA Global Numberings

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering



68

DMDA Global vs. Local NumberingDMDA Global vs. Local Numbering

Global: Each vertex has a unique id, belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering



69

DM VectorsDM Vectors

The DM object contains only layout (topology) information

All field data is contained in PETSc Vecs

Global vectors are parallel

Each process stores a unique local portion

DMCreateGlobalVector(DM dm, Vec *gvec)

Local vectors are sequential (and usually temporary)

Each process stores its local portion plus ghost values

DMCreateLocalVector(DM dm, Vec *lvec)

includes ghost values!

Coordinate vectors store the mesh geometry

DMDAGetCoordinates(DM dm, Vec *coords)

Can be manipulated with their own DMDA
DMDAGetCoordinateDA(DM dm,DM *cda)



70

Updating GhostsUpdating Ghosts

Two-step Process for Updating Ghosts

enables overlapping computation and communication

DMGlobalToLocalBegin(dm, gvec, mode, lvec)

gvec provides the data

mode is either INSERT_VALUES or ADD_VALUES

lvec holds the local and ghost values

DMGlobalToLocalEnd(dm, gvec, mode, lvec)

Finishes the communication

Reverse Process

Via DMLocalToGlobalBegin() and DMLocalToGlobalEnd().



71

DMDA StencilsDMDA Stencils

Available Stencils

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil



72

Creating a DMDACreating a DMDA

DMDACreate2d(comm, xbdy, ybdy, type, M, N, m, n,
dof, s, lm[], ln[], DA *da)

xbdy,ybdy: Specifies periodicity or ghost cells
DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_MIRROR,
DM_BOUNDARY_PERIODIC

type

Specifies stencil: DMDA_STENCIL_BOX or DMDA_STENCIL_STAR

M,N

Number of grid points in x/y-direction

m,n

Number of processes in x/y-direction

dof
Degrees of freedom per node

s
The stencil width

lm,ln

Alternative array of local sizes

Use NULL for the default



73

PETScPETSc

Debugging and Profiling



74

Scalability DefinitionsScalability Definitions

Strong scalability
Fixed problem size

execution time T inversely
proportional to number of
processors p

Weak scalability
Fixed problem size per processor

execution time constant as problem
size increases



75

Scalability WarningScalability Warning

The easiest way to make software scalable
is to make it sequentially inefficient.

(Gropp 1999)

We really want efficient software
Need a performance model

memory bandwidth and latency
algorithmically critical operations (e.g., dot products, scatters)
floating point unit

Scalability shows marginal benefit of adding more cores, nothing more

Constants hidden in the choice of algorithm

Constants hidden in implementation



76

PETSc DebuggingPETSc Debugging

By default, a debug build is provided

Launch the debugger
-start_in_debugger [gdb,lldb,dbx,noxterm]
-on_error_attach_debugger [gdb,lldb,dbx,noxterm]

Attach the debugger only to some parallel processes
-debugger_nodes 0,1

Set the display (often necessary on a cluster)
-display :0



77

Debugging TipsDebugging Tips

Put a breakpoint in PetscError() to catch errors as they occur

PETSc tracks memory overwrites at both ends of arrays
The CHKMEMQ macro causes a check of all allocated memory
Track memory overwrites by bracketing them with CHKMEMQ

PETSc checks for leaked memory
Use PetscMalloc() and PetscFree() for all allocation
Print unfreed memory on PetscFinalize() with -malloc_dump

Simply the best tool today is Valgrind
It checks memory access, cache performance, memory usage, etc.
http://www.valgrind.org
Pass -malloc 0 to PETSc when running under Valgrind
Might need --trace-children=yes when running under MPI
--track-origins=yes handy for uninitialized memory

http://www.valgrind.org


78

PETSc ProfilingPETSc Profiling

Profiling

Use -log_view [previously -log_summary] for a performance profile
Event timing
Event flops
Memory usage
MPI messages

Call PetscLogStagePush() and PetscLogStagePop()

User can add new stages
Call PetscLogEventBegin() and PetscLogEventEnd()

User can add new events

Call PetscLogFlops() to include your flops



79

PETSc ProfilingPETSc Profiling

Reading -log view
Max Max/Min Avg Total

Time (sec): 1.548e+02 1.00122 1.547e+02
Objects: 1.028e+03 1.00000 1.028e+03
Flops: 1.519e+10 1.01953 1.505e+10 1.204e+11
Flops/sec: 9.814e+07 1.01829 9.727e+07 7.782e+08
MPI Messages: 8.854e+03 1.00556 8.819e+03 7.055e+04
MPI Message Lengths: 1.936e+08 1.00950 2.185e+04 1.541e+09
MPI Reductions: 2.799e+03 1.00000

Also a summary per stage

Memory usage per stage (based on when it was allocated)

Time, messages, reductions, balance, flops per event per stage

Always send -log_view when asking
performance questions on mailing list



80

PETSc ProfilingPETSc Profiling

Event Count Time (sec) Flops --- Global --- --- Stage --- Total

Max Ratio Max Ratio Max Ratio Mess Avg len Reduct %T %F %M %L %R %T %F %M %L %R Mflop/s

------------------------------------------------------------------------------------------------------------------------

--- Event Stage 1: Full solve

VecDot 43 1.0 4.8879e-02 8.3 1.77e+06 1.0 0.0e+00 0.0e+00 4.3e+01 0 0 0 0 0 0 0 0 0 1 73954

VecMDot 1747 1.0 1.3021e+00 4.6 8.16e+07 1.0 0.0e+00 0.0e+00 1.7e+03 0 1 0 0 14 1 1 0 0 27 128346

VecNorm 3972 1.0 1.5460e+00 2.5 8.48e+07 1.0 0.0e+00 0.0e+00 4.0e+03 0 1 0 0 31 1 1 0 0 61 112366

VecScale 3261 1.0 1.6703e-01 1.0 3.38e+07 1.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 414021

VecScatterBegin 4503 1.0 4.0440e-01 1.0 0.00e+00 0.0 6.1e+07 2.0e+03 0.0e+00 0 0 50 26 0 0 0 96 53 0 0

VecScatterEnd 4503 1.0 2.8207e+00 6.4 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0

MatMult 3001 1.0 3.2634e+01 1.1 3.68e+09 1.1 4.9e+07 2.3e+03 0.0e+00 11 22 40 24 0 22 44 78 49 0 220314

MatMultAdd 604 1.0 6.0195e-01 1.0 5.66e+07 1.0 3.7e+06 1.3e+02 0.0e+00 0 0 3 0 0 0 1 6 0 0 192658

MatMultTranspose 676 1.0 1.3220e+00 1.6 6.50e+07 1.0 4.2e+06 1.4e+02 0.0e+00 0 0 3 0 0 1 1 7 0 0 100638

MatSolve 3020 1.0 2.5957e+01 1.0 3.25e+09 1.0 0.0e+00 0.0e+00 0.0e+00 9 21 0 0 0 18 41 0 0 0 256792

MatCholFctrSym 3 1.0 2.8324e-04 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 0.0e+00 0 0 0 0 0 0 0 0 0 0 0

MatCholFctrNum 69 1.0 5.7241e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 0.0e+00 2 4 0 0 0 4 9 0 0 0 241671

MatAssemblyBegin 119 1.0 2.8250e+00 1.5 0.00e+00 0.0 2.1e+06 5.4e+04 3.1e+02 1 0 2 24 2 2 0 3 47 5 0

MatAssemblyEnd 119 1.0 1.9689e+00 1.4 0.00e+00 0.0 2.8e+05 1.3e+03 6.8e+01 1 0 0 0 1 1 0 0 0 1 0

SNESSolve 4 1.0 1.4302e+02 1.0 8.11e+09 1.0 6.3e+07 3.8e+03 6.3e+03 51 50 52 50 50 99100 99100 97 113626

SNESLineSearch 43 1.0 1.5116e+01 1.0 1.05e+08 1.1 2.4e+06 3.6e+03 1.8e+02 5 1 2 2 1 10 1 4 4 3 13592

SNESFunctionEval 55 1.0 1.4930e+01 1.0 0.00e+00 0.0 1.8e+06 3.3e+03 8.0e+00 5 0 1 1 0 10 0 3 3 0 0

SNESJacobianEval 43 1.0 3.7077e+01 1.0 7.77e+06 1.0 4.3e+06 2.6e+04 3.0e+02 13 0 4 24 2 26 0 7 48 5 429

KSPGMRESOrthog 1747 1.0 1.5737e+00 2.9 1.63e+08 1.0 0.0e+00 0.0e+00 1.7e+03 1 1 0 0 14 1 2 0 0 27 212399

KSPSetup 224 1.0 2.1040e-02 1.0 0.00e+00 0.0 0.0e+00 0.0e+00 3.0e+01 0 0 0 0 0 0 0 0 0 0 0

KSPSolve 43 1.0 8.9988e+01 1.0 7.99e+09 1.0 5.6e+07 2.0e+03 5.8e+03 32 49 46 24 46 62 99 88 48 88 178078

PCSetUp 112 1.0 1.7354e+01 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 6 4 0 0 1 12 9 0 0 1 79715

PCSetUpOnBlocks 1208 1.0 5.8182e+00 1.0 6.75e+08 1.0 0.0e+00 0.0e+00 8.7e+01 2 4 0 0 1 4 9 0 0 1 237761

PCApply 276 1.0 7.1497e+01 1.0 7.14e+09 1.0 5.2e+07 1.8e+03 5.1e+03 25 44 42 20 41 49 88 81 39 79 200691



81

PETSc ProfilingPETSc Profiling

Communication Costs
Reductions: usually part of Krylov method, latency limited

VecDot
VecMDot
VecNorm
MatAssemblyBegin
Change algorithm (e.g. IBCGS)

Point-to-point (nearest neighbor), latency or bandwidth
VecScatter
MatMult
PCApply
MatAssembly
SNESFunctionEval
SNESJacobianEval
Compute subdomain boundary fluxes redundantly
Ghost exchange for all fields at once
Better partition



82

ConclusionsConclusions

PETSc can help You

Solve algebraic and DAE problems in your application area

Rapidly develop efficient parallel code, can start from examples

Develop new solution methods and data structures

Debug and analyze performance

Advice on software design, solution algorithms, and performance

petsc-{users,dev,maint}@mcs.anl.gov

You can help PETSc

Report bugs and inconsistencies, or if you think there is a better way

Tell us if the documentation is inconsistent or unclear

Consider developing new algebraic methods as plugins, contribute if your
idea works



83

Follow Up; Getting HelpFollow Up; Getting Help

http://www.mcs.anl.gov/petsc

Public questions: petsc-users@mcs.anl.gov, with searchable archives

Private questions: petsc-maint@mcs.anl.gov

http://www.mcs.anl.gov/petsc
petsc-users@mcs.anl.gov
petsc-maint@mcs.anl.gov


84

Hands On ExercisesHands On Exercises

Instructions
http://www.mcs.anl.gov/petsc/petsc-3.7-atpesc2016/tutorials/HandsOnExercise.html

Examples
Linear Poisson equation on a 2D grid

src/ksp/ksp/examples/tutorials/ex50.c
Nonlinear ODE arising from a time-dependent one-dimensional PDE

src/ts/examples/tutorials/ex2.c
Nonlinear PDE on a structured grid

src/snes/examples/tutorials/ex19.c
Linear Stokes-type PDE on a structured grid

src/ksp/ksp/examples/tutorials/ex42.c
Nonlinear time-dependent PDE on Unstructured Grid

src/ts/examples/tutorials/ex11.c

http://www.mcs.anl.gov/petsc/petsc-3.7-atpesc2016/tutorials/HandsOnExercise.html
http://www.mcs.anl.gov/petsc/petsc-3.7-atpesc2016/src/ksp/ksp/examples/tutorials/ex50.c.html
http://www.mcs.anl.gov/petsc/petsc-3.7-atpesc2016/src/ts/examples/tutorials/ex2.c.html
http://www.mcs.anl.gov/petsc/petsc-3.7-atpesc2016/src/snes/examples/tutorials/ex19.c.html
http://www.mcs.anl.gov/petsc/petsc-3.7-atpesc2016/src/ksp/ksp/examples/tutorials/ex42.c.html
http://www.mcs.anl.gov/petsc/petsc-3.7-atpesc2016/src/ts/examples/tutorials/ex11.c.html

	PETSc Overview
	PETSc Overview
	Iterative Solvers
	Preconditioners
	Nonlinear Solvers
	Time Integration
	Nonlinear Optimization: TAO
	Topology Abstractions
	Debugging and Profiling
	Conclusions

